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Influence of spatial inhomogeneities on the Fréedericksz threshold
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By analyzing the Fréedericksz transition induced by an external magnetic field on a nematic liquid
crystal, we determine the elastic contribution to the anisotropic part of the anchoring energy. Our
result is in good agreement with the one obtained by other groups for the same problem. In the
simple case in which the elastic constants change in a surface layer whose thickness is very small with
respect to the thickness of the sample, our analysis shows that the extrapolation length of elastic
origin is of the order of the thickness of the surface layer. The influence of the spatial variation of
the diamagnetic anisotropy is also analyzed. It is shown that the contribution to the surface energy,

arising from this spatial variation, is negligible.

PACS number(s): 61.30.Gd, 64.70.Md

Let us consider a nematic liquid crystal (NLC) slab of
thickness d. The surface anchoring energy is supposed
strong and the easy direction homeotropic [1]. In the
presence of an external field H parallel to the bounding
walls, the bulk free energy density is [1]

1 12 1 .
fo= ke = SxaHsin6, (1)

where the first term on the right-hand side is the elas-
tic contribution and the second one is connected with
the magnetic anisotropy. ¢ is the tilt angle defined by
¢ = arccos(7i - Z), where 7 is the NLC director and the z
axis is normal to the boundaries. k and x, are the Frank
elastic constant and the diamagnetic anisotropy, respec-
tively, and ¢ = d¢/dz. The total free energy, per unit
surface, of the sample under consideration is given by [1]

42 1.2 1 2 2
F = ) [1k¢ — IxaH?sin?¢] dz. (2)
—d/2

By minimizing (2) it is possible to obtain the profile
¢ = ¢(z;H) and the critical field for the Fréedericksz
transition He [2]. This critical field is defined by the
condition that for H < Hg, ¢ = 0, Vz € (—d/2, d/2),
minimizes F given by (2). This effect has been impor-
tant in the past because the first experimental determi-
nations of the Frank elastic constants have been done by
analyzing the threshold field in different geometries. A
simple calculation shows that if £ and x, are position
independent, H¢ is given by [1]
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In the case in which the surface anchoring energy is
finite, instead of (2) it is necessary to minimize the quan-
tity [3]

4/ 14’2 1 2 .2
G-—-/ 5k — 3xaH*sin® @] dz
—d/2

+fs(=d/2) + fs(d/2), (4)

where fs(+d/2) takes into account the anisotropic part
of the surface energy. In the Rapini-Papoular approxi-
mation, fs(£d/2) = W4 /2 sin® ¢(£d/2), where W, are
the surface anchoring strengths [3]. In the framework of
a symmetric sample, W, = W_ = W and (4) writes,
taking into account that ¢(z) = ¢(—=z), as

d/2 )
G= [k’ — Ly H?sin? ¢] dz + W sin® 65, (5)
—d/2

where ¢s = ¢(£d/2). In this situation the analysis of the

stability of the undeformed state shows that the critical
field is given by (3]

He d _ mHg
How 5= tan (2HC°°> , (6)

known as Rapini-Papoular equation. In (6) L = k/W is
the extrapolation length and Hco is still given by (3).
In the limit of relatively strong anchoring (L < d), (6) is
well approximated by [3]

He = How (1 - %) : 7)

Equation (6) holds in the hypothesis in which k& and xq
are position independent.
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Recent papers devoted to the evaluation of the elas-
tic constants by means of semimicroscopic models show
that, actually, the elastic constants near the bounding
walls are expected to be position dependent [4-7]. The
surface layer over which the elastic constants are position
dependent has a thickness of the order of several molec-
ular dimensions. Long ago, Mada [8] suggested that the
k(z) dependence may be macroscopically interpreted as
a weak anchoring, even if actually the surface energy is
very large, i.e., the anchoring is strong. Despite the fact
that the analysis performed by Mada was not completely
correct, the idea was physically sound [9]. More recently,
Yokoyama et al. [10], Faetti [11], Barbero and Durand
[12], and Alexe-Ionescu et al. [13] have analyzed in what
manner it is possible to define an effective anchoring en-
ergy connected to the spatial variation of the elastic con-
stants. By means of a rather complex analysis they show
that the effective anchoring energy is connected to the
k(z) dependence by [10-13]

1 k@ [Tk kE)
W"’< kok(2) >_L k) o ®

where p is the thickness of the surface layer in which
k(z) changes and k; is the bulk value of the elastic con-
stant. The spatial variation of the elastic constant has
two origins. The first one is due to the fact that the inter-
action volume is incomplete near the surface, in a layer
whose thickness is of the order of the range of the inter-
molecular forces responsible for the nematic phase [4,5].
The second origin is connected with the fact that near a
bounding wall there is a profile of scalar order parameter
S = S(z) [1]. The spatial variation of S takes place over
a few coherence lengths £ and S passes from the surface
value, which depends on the NLC-substrate interaction
and on the temperature, to the bulk value, which depends
only on the temperature [1]. Since the elastic constants
are, in a first approximation, proportional to $2 [14], it
follows that S = S(z) implies k£ = k(z). Of course if
S = S(z) not only the elastic constants are expected to
be position dependent, but also the diamagnetic or di-
electric anisotropy, which are proportional to S.

Now we want to rederive the effective anchoring energy
(8) in a simple way by considering the Fréedericksz effect.
We will suppose that the NLC is characterized by strong
homeotropic anchoring, but k = k(z) and x, = X.(2). In
this framework (2) needs to be rewritten as

d/2 .
F = [2k(2) 0 — %xa(z)I:l'2 sin? 45] dz, (9)
—d/2
where
k(z) = kp — 0k(2), Xa = Xab — 0Xa(2). (10)

In (10) kp and x,p are, respectively, the bulk values of the
elastic constant and of the diamagnetic anisotropy. Both
8k(z) and dx,(z) take into account the spatial variations
of k(z) and xo(z). They are localized in two surface
layers of thickness o. This thickness coincides with p or

¢ according to the fact that the incomplete interaction or
the spatial variation of the scalar order parameter is the
most important source for the k(z) and x,(z) variations.
Hence 8k(z) # 0 and dx4(z) # O for z € (—d/2,—d/2+0)
and z € (d/2 — 0,d/2). For H close to Hp, ¢ < 1,
Vz € (—d/2,d/2). By expanding ¢(z) in Fourier series
and retaining only the first harmonic we have

#(2) = ¢o cos (—gz), (11)

since ¢(+d/2)=0 for the strong anchoring hypothesis. By
substituting (11) into (9) one obtains

F = %4502 [(—2)2 /‘://22 k(z) sin® (% z) dz

—H? /d/2 Xa(2) cos? (% z) dz} . (12)

—d/2

From (12) in the case in which k(z) = kp and x4 (z) = Xab
simple calculations give F' < 0 for H > H¢oo defined by
(3). In the present case the above-mentioned condition
F < 0 gives

d/2 . 2w 1/2
- [ _2/2 k(z) smz(z z)dz ]

He = = a2 (13)

d a2 Xa(2) cos?(F z)dz

for the threshold field. If we now consider (10), Eq. (13)
can be rewritten as

1/2

o n [1—% i‘é%“—’i%lsin%%z)dz} 1)
C = 11Coo d/2 dxa(z
1—% —¢/i/2 —Ll’;ab cos?(% z)dz

Since usually 0 <« d and max | 6k(z) | is of the order
of ky and max | dx,(2) | is of the order of xqp, (14) is
equivalent to

1 (%2 [5k(2) 7r
He = Heooo 1——/ sin? (= z
¢ e { d d,z[ ks (d )

AP Z)]dz}. (15)

Xab

By comparing (15) with (7) we derive that to a k(z) and
Xa(2z) dependence it is possible to associate an effective
anchoring energy whose extrapolation length is given by

1 (Y2 [8k(z) . (7 SXa(2) o (™
L= 5 Ld/z [—k—b— sin (a‘ Z) - —XTCOS (—d— Z):l dz.
(16)

Since 6k(z) is different from zero only in the two layers
(—d/2,—d/2 + o) and (d/2 — 0,d/2), cos?(5z) is prac-
tically zero in the case in which o <« d. Consequently,
from (16) one derives that

L~ % /d/2 Sk(2) sin? (E z) dz. (17)
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This means that x,(z) does not contribute in a signifi-
cant manner to the effective extrapolation length, or to
the effective anchoring energy. From (17) the effective
anchoring energy is found to be

d/2
/ Sk(2) sin (7_r z) dz. (18)
W a2 kv’ d
Since o < d, (17) is equivalent to
—d/2+0o
L 2a<%> =/ 0k(2) 4, (19)
kv /. —d/2 ke

In the limit o < d, L is an intrinsic property of the NLC,
independent of the thickness of the sample. For a rough
estimation of (19) we can assume for §k(z) an exponential
behavior of amplitude kp/2 [4-6] and relaxation length o.
In this case, from (19) we obtain

L ~o, (20)

which is consistent with the estimation of the same pa-
rameter obtained in [10-13] in a different manner.

However, there is a difference between the result ob-
tained by us and the previous one reported in [10-13].
Formula (19) is approximated in the sense that k; ap-
pears in the denominator. On the contrary, in the one
obtained by means of (8), which is

[k
L‘/_m k(z) (1)

k(z) is present. This implies that (19) is a good approx-

imation of (21) only if §k(z) is small with respect to k.
In the opposite case in which dk/ky ~ 1 the difference
between (19) and (21) could be important. In this situa-
tion the equivalent anchoring energy, which is possible to
define by means of the Fréederickz transition, no longer
corresponds to the one usually defined according to Gibbs
theory of interfaces [10-13].

However, if k = k(z) due to the spatial dependence of
the scalar order parameter S, a simple calculation shows

that

where S; and S, are the surface and bulk values of the
scalar order parameter. Usually S, is not very different
from Sp [15], and hence dk/ky, < 1. This means that, at
least in this case our model works well.

In conclusion we can stress the main results of our pa-
per. By considering the well known Fréedericksz effect
we have shown that to a spatial variation of the elastic
constants it is possible to associate an effective anchor-
ing energy, even if the true anchoring energy is strong.
The result obtained by us is in agreement with the one
obtained by other authors in a more complicated man-
ner. We have shown, furthermore, that in the case in
which the thickness of the surface layer o is very small
with respect to d, the spatial variation of the diamag-
netic anisotropy does not play an important role in the
effective surface energy.
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